

On Anosov Energy Levels of Hamiltonians on Twisted Cotangent Bundles

Gabriel P. Paternain

Abstract. Let T^*M denote the cotangent bundle of a manifold M endowed with a twisted symplectic structure [1]. We consider the Hamiltonian flow generated (with respect to that symplectic structure) by a convex Hamiltonian $H: T^*M \to \mathbb{R}$, and we consider a compact regular energy level of H, on which this flow admits a continuous invariant Lagrangian subbundle E. When dim $M \geq 3$, it is known [9] that such energy level projects onto the whole manifold M, and that E is transversal to the vertical subbundle. Here we study the case dim M=2, proving that the projection property still holds, while the transversality property may fail. However, we prove that in the case when E is the stable or unstable subbundle of an Anosov flow, both properties hold.

1. Results

Let M^n be a connected manifold without boundary, T^*M its cotangent bundle, $\pi: T^*M \to M$ the canonical projection and, if $\theta \in T^*M$, let $V(\theta) \subset T_{\theta}T^*M$ be the vertical fibre at θ , defined as usual as the kernel of

$$d\pi_{\theta}: T_{\theta}T^*M \to T_{\pi(\theta)}M.$$

Denote by ω_0 the canonical symplectic form of T^*M . If Ω is a closed 2-form on M then, $\omega = \omega_0 + \pi^*\Omega$ defines a new symplectic form on T^*M and the symplectic manifold (T^*M,ω) is called a *twisted cotangent bundle* [1]. The vertical subspaces $V(\theta)$ are Lagrangian subspaces with respect to ω for every $\theta \in T^*M$.

Received 7 December 1993.

AMS Subject Classification (1991): Primary 58F15, 58F05. Key words and phrases: Convex Hamiltonian, twisted cotangent bundle, Anosov flow, invariant Lagrangian subbundle.

208 GABRIEL P. PATERNAIN

Let H be a Hamiltonian on T^*M , let $J\nabla H$ be its symplectic gradient respect to ω and let ϕ_t denote its associated Hamiltonian flow; ϕ_t leaves all the level sets $\Sigma_{\sigma} \stackrel{\text{def}}{=} H^{-1}(\sigma)$ invariant.

Recall that a Hamiltonian $H:T^*M\to\mathbb{R}$ is said to be *convex* if for each $q\in M$ the function $H(q,\cdot)$ regarded as a function on the linear space T_q^*M has positive definite Hessian.

Let Σ_{σ} be a compact regular energy level. We say that $\phi_t|_{\Sigma_{\sigma}}$ admits a continuous invariant Lagrangian subbundle if there exists a continuous subbundle E of $T(T^*M)|_{\Sigma_{\sigma}}$ such that for all $\theta \in \Sigma_{\sigma}$, the fibre $E(\theta)$ is a Lagrangian subspace of $T_{\theta}T^*M$ and

$$E(\phi_t(\theta)) = d\phi_t(E(\theta))$$

for all $t \in \mathbb{R}$. It is well known that if the flow $\phi_t|_{\Sigma_{\sigma}}$ is Anosov then, both the stable and unstable subbundles are continuous invariant Lagrangian subbundles.

Motivated by the results in [6, 8], we proved in [9] the following theorem:

Theorem 1.1. Let Σ_{σ} be a compact regular energy level and suppose that $\phi_t|_{\Sigma_{\sigma}}$ admits a continuous invariant Lagrangian subbundle E. If H is convex and ω^{n-1} is exact then,

- (a) $E(\theta) \cap V(\theta) = \{\theta\}, \forall \theta \in \Sigma_{\sigma}.$
- (b) $\pi(\Sigma_{\sigma}) = M$. In particular M is compact.

For $n \geq 3$, the form ω^{n-1} is always exact since $H^{2n-2}(T^*M, \mathbb{R}) = 0$; however if n = 2 this is no longer the case unless Ω is exact (note that ω_0 is always exact). Thus a natural question arises: is Theorem 1.1 still true if n = 2 and Ω is non-exact?

The theorems below describe the situation for n=2. In what follows, we will assume without loss of generality that M^2 is compact and orientable, otherwise any closed 2-form on M is exact [5, Proposition IX, Section 5.13].

Theorem A. Let n=2 and let Σ_{σ} be a compact regular energy level and suppose that $\phi_t|_{\Sigma_{\sigma}}$ admits a continuous invariant Lagrangian subbundle E. If H is convex then, $\pi(\Sigma_{\sigma})=M$.

We now exhibit an example (compare with [7]) for which part (a) in Theorem 1.1 is false for n = 2 and Ω non-exact.

Example 1.2. Let $M = T^2$ and let $H: T^*T^2 \to \mathbb{R}$ be

$$H(q,p) = \frac{1}{2}(p_1^2 + p_2^2)$$

where

$$(q,p) = (q_1, q_2, p_1, p_2) \in T^*T^2 = T^2 \times \mathbb{R}^2.$$

Let $\Omega = dq_1 \wedge dq_2$.

If we identify $T_{(q,p)}T^*T^2$ with \mathbb{R}^4 , it is easy to check that

$$J\nabla H(q_1,q_2,p_1,p_2) = (p_1,p_2,-p_2,p_1).$$

Integrating $J\nabla H$, it follows that all the orbits of ϕ_t are closed with period 2π .

Consider the vector fields on T^*T^2 defined by

$$X_{a,b}(q_1, q_2, p_1, p_2) = (a, b, 0, 0), \quad ab \neq 0.$$

One easily checks that

$$E_{a,b}(q_1, q_2, p_1, p_2) = \mathbb{R}J\nabla H(q_1, q_2, p_1, p_2) \oplus \mathbb{R}X_{a,b}(q_1, q_2, p_1, p_2)$$

is a C^{∞} -Lagrangian subbundle invariant under ϕ_t on any positive energy level.

Next note that for example $E_{1,0}$ intersects the vertical at any point of the form $(q_1,q_2,\pm 1,0)$ on the level set H(q,p)=1/2. This set is the union of two copies of T^2 and the Maslov index of every orbit of ϕ_t is 2. This clearly shows that part (a) in Theorem 1.1 is false for n=2 and Ω non-exact.

However, if we assume the stronger hypothesis that $\phi_t|_{\Sigma_{\sigma}}$ is Anosov we show:

Theorem B. Let n=2 and let Σ_{σ} be a compact regular energy level and suppose that $\phi_t|_{\Sigma_{\sigma}}$ is Anosov. Then if H is convex,

$$E(\theta) \cap V(\theta) = \{0\}, \forall \theta \in \Sigma_{\sigma}$$

210 GABRIEL P. PATERNAIN

where E denotes the stable or the unstable subbundle of ϕ_t .

2. Proofs

Proof of Theorem A. Suppose that $\pi(\Sigma_{\sigma}) \neq M$. Then we showed in [9, Proof of Theorem 1.2] that there exists some $\theta \in \Sigma_{\sigma}$ for which $E(\theta) \cap V(\theta) \neq \{0\}$ and therefore, that there exists a closed connected codimension one stratified submanifold $S \subset \Sigma_{\sigma}$, that is transversal to the flow ϕ_t . Moreover, the low dimensional stratas of S have codimension \geq 3 and therefore S represents a cycle in homology, transversally oriented by the flow ϕ_t . Since ω restricted to the codimension one strata of S is a volume form and ω_0 is exact we have:

$$0 \neq \int_{S} \omega = \int_{S} \omega_{0} + \int_{S} \pi^{*} \Omega = \int_{S} \pi^{*} \Omega.$$

Next note that $\int_S \pi^*\Omega$ only depends on the cohomology class of Ω . Since $\pi(\Sigma_{\sigma}) \neq M$, there exists an open set U in M, not intersecting $\pi(\Sigma_{\sigma})$. Let $\widetilde{\Omega}$, be a 2-form cohomologous to Ω and with support contained in U. Then obviously $(\pi|_{\Sigma_{\sigma}})^*\widetilde{\Omega} = 0$ and thus

$$0 \neq \int_{S} \pi^* \Omega = \int_{S} \pi^* \widetilde{\Omega} = 0.$$

This contradiction completes the proof of Theorem A. \square

Proof of Theorem B. From Theorem A we know that Σ_{σ} is 3-manifold foliated by circles and by a result of E. Ghys [4], ϕ_t is topologically conjugate to the geodesic flow of a metric on M of constant negative curvature. It follows then, that the closure of the set of primitive closed orbits of ϕ_t in $H_1(\Sigma_{\sigma}, \mathbb{R})$ is the closure of a convex open set containing the origin in its interior, since the same property holds for the geodesic flow of a compact negatively curved manifold. Thus if

$$\alpha: H_1(\Sigma_{\sigma}, \mathbb{R}) \to \mathbb{R}$$

is any non-trivial cohomology class, there exists a closed orbit γ of ϕ_t so that $\alpha(\gamma) < 0$.

Suppose now that for some $\theta \in \Sigma_{\sigma}$, $E(\theta) \cap V(\theta) \neq \{0\}$, where E stands for the stable or the unstable subbundle of ϕ_t . Then (cf. [9,

Proposition 3.3]) the Maslov class $\mu \in H^1(\Sigma_{\sigma}, \mathbb{R})$ associated with E is non-trivial. On the other the convexity of H implies that if γ is any closed orbit of ϕ_t , then $\mu(\gamma) \geq 0$ [2, 3]. This contradiction completes the proof of Theorem B. \square

Acknowledgements. The author would like to thank R. Mañé and M. Paternain for several useful discussions.

References

- V. I Arnold, A. B. Givental, Symplectic Geometry, Dynamical Systems IV, Encyclopaedia of Mathematical Sciences, Springer Verlag: Berlin 1990.
- [2] M. Bialy, L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. and Funct. Analysis, 2: (1992), 173-210.
- [3] J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math., 21: (1976), 173-195.
- [4] E. Ghys, Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergod. Th and Dynam. Sys., 4: (1984), 67-80.
- [5] W. Greub, S. Halperin, R. Vanstone, Connections, Curvature and Cohomology, Vol. I, Academic Press, New York-London 1972.
- [6] W. Klingenberg, Riemannian manifolds with geodesic flows of Anosov type, Ann. of Math., 99: (1974), 1-13.
- [7] A. Knauf, Closed orbits and converse KAM theory, Nonlinearity, 3: (1990), 961-973.
- [8] R. Mañé, On a theorem of Klingenberg, Dynamical Systems and Bifurcation Theory, M. Camacho, M. Pacifico and F. Takens eds. Pitman Research Notes in Math., 160: (1987), 319-345.
- [9] G. P. Paternain, M. Paternain, On Anosov Energy Levels of Convex Hamiltonian Systems, to appear in Math. Z.

Gabriel P. Paternain Mathematics Departament University of Maryland College Park, MD 20742